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Abstract. To study the set torsA of torsion classes of a finite dimensional k-algebra
A with n simple modules, we apply the sign-decomposition of torsA, into the subsets
torsϵA for all ϵ ∈ {±1}n. For an algebra with radical square zero, we show that torsϵA
corresponds bijectively with the set of faithful torsion classes of a certain hereditary
algebra A!

ϵ with radical square zero.

1. Introduction

Let A be a finite dimensional basic algebra over a field k and modA the category of
finitely generated right A-modules. In representation theory of finite dimensional alge-
bras, torsion classes of the module category has been studied extensively from various
perspective, where a full subcategory of modA is called torsion class if it is closed under
factor modules, extensions and isomorphisms. In this paper, we study the set torsA of
torsion classes of modA. The recent developed τ -tilting theory [1] provides an effective
tool to study torsA with partial order given by inclusion relations, however we need to
restrict our study to torsion classes which are functorially finite. In general, it is very
hard to classify non-functorially finite torsion classes.

The first aim of this note is to introduce a new approach, which we call sign-decomposition,
to the classification problem of all torsion classes. The second aim is to classify all torsion
classes over algebras with radical square zero as an application of the sign-decomposition.
They are one of the most fundamental classes of algebras and firstly studied by Gabriel
[3]. We also discuss a connection with τ -tilting theory.

2. Sign-decomposition

Let A be a finite dimensional basic k-algebra with n simple modules S(1), . . . , S(n).
We denote by P (i) be the projective cover of S(i) for i = 1, . . . , n.

Definition 1. For each ϵ ∈ {±1}n, let

torsϵA := {T ∈ torsA | S(i) ∈ T ⇔ ϵ(i) = 1}.

Clearly, torsA is a disjoint union of these 2n subsets.

We note that torsϵA forms an interval in torsA whose minimal (respectively, maximal)
element is the smallest torsion class containing all S(i) (respectively, P (i)) such that
ϵ(i) = 1. We begin with the following observation.
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Proposition 2. Let A → B a surjective morphism of k-algebras. Then the following
diagram commutes:

torsA torsB
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where (−) maps torsA ∋ T 7→ T := T ∩modB ∈ torsB.

Here, the surjectivity of (−) is shown in [2]. It is interesting when the map (−) restricts
to an isomorphism from torsϵA to torsϵB for a given ϵ ∈ {±1}n.

Next, we focus on a special class of torsion classes said to be functorially finite, i.e. such
torsion classes of the form T = FacM for some M ∈ modA. The following is a basic result
in τ -tilting theory, where τ is the Auslander-Reiten translation of A (For the definition
of support τ -tilting modules we refer to [1]).

Theorem 3. [1] There is a bijection between

(1) f-torsA the set of functorially finite torsion classes of modA and
(2) sτ -tiltA the set of isomorphism classes of basic support τ -tilting A-modules.

Remark 4. (1) Any tilting module is precisely a faithful support τ -tilting module. We
denote by tiltA the set of isomorphism classes of basic tilting A-modules.

(2) Up to isomorphisms, any basic support τ -tilting A-module M uniquely gives rise
to a τ -tilting pair (M,P ) with P a projective A-module. In this note, we will
identify M with a pair (M,P ) above.

A natural question is that what happens if we restrict the bijection to each ϵ ∈ {±1}n.
There is a simple answer in terms of the g-vectors of modules.

Definition 5. [1] Let M ∈ modA and P−1 → P 0 → M → 0 be a minimal projective
presentation of M , where P 0 =

⊕n
i=1 P (i)mi and P−1 =

⊕n
i=1 P (i)m

′
i . We define the

g-vector gMA ∈ Zn of M to be gMA := (m1 − m′
1, . . . ,mn − m′

n). In addition, for a pair

(M,P ) of A-modules, let g
(M,P )
A := gMA − gPA .

We have the following.

Proposition 6. For each ϵ ∈ {±1}n, the map in Theorem 3 restricts to a bijection
between

(1) f-torsϵA := torsϵA ∩ f-torsA and

(2) sτ -tiltϵA := {(M,P ) ∈ sτ -tiltA | g(M,P )
i ∈ ϵ(i) · Z>0, i = 1, . . . , n}.

3. Algebras with radical square zero

In this section, we study torsion classes for algebras with radical square zero, namely,
such algebras that the square of the Jacobson radical is zero. Let A be a k-algebra with
radical square zero and having n simple modules. A main result is the following.

Theorem 7. Let A be an algebra with radical square zero. For each ϵ ∈ {±1}n, there is
a hereditary algebra A!

ϵ with radical square zero and there is an isomorphism of partially
ordered sets between



(1) torsϵA and
(2) fa-torsA!

ϵ the set of torsion classes of modA!
ϵ which are faithful, i.e. containing all

injectives.

which induces a bijection between

(1)’ sτ -tiltϵA and
(2)’ tiltA!

ϵ.

In particular, we have bijections

torsA
1−1←→

⊔
ϵ∈{±1}n

fa-torsA!
ϵ and sτ -tiltA

1−1←→
⊔

ϵ∈{±1}n
tiltA!

ϵ.

Remark 8. We can describe the hereditary algebra A!
ϵ above in terms of valued quivers.

Let Γ be a valued quiver of A. Then a valued quiver of A!
ϵ coincides with the following

bipartite quiver Γ!
ϵ:

• the set of vartices is the same as Γ.
• we draw an arrow i ← j if there is a valued arrow i → j in Γ with ϵ(i) = 1,
ϵ(j) = −1 and assigning to this arrow the same valuation.

In particular, if Γ is simply a quiver, then A!
ϵ is precisely a path algebra of Γ!

ϵ.

The bijection in Theorem 7 is explicitly described in the level of g-vectors. Now, for a
given ϵ ∈ {±1}n, we denote by T(M,P ) the tilting A!

ϵ-module corresponding to (M,P ) ∈
sτ -tiltϵA.

Theorem 9. Let ϵ ∈ {±1}n and (M,P ) ∈ sτ -tiltϵA. The diagonal matrix Bϵ :=

diag(ϵ(1), . . . , ϵ(n)) transforms the g-vector g
(M,P )
A of (M,P ) into the dimension vector

c
T(M,P )

A!
ϵ

of T(M,P ), that is, g
(M,P )
A = Bϵ · c

T(M,P )

A!
ϵ

holds.

4. Example

In this example we consider a quiver Γ: (1 2)++ ++kkkk and A := kΓ/I an algebra with

radical square zero, where I is an ideal generated by all path of length 2. By Remark 8,
we have A!

ϵ = kΓ!
ϵ a path algebra of Γ!

ϵ for each ϵ ∈ {±1}2, where

Γ!
(1,1) : (1 2) , Γ!

(1,−1) : (1 2)oo
oo , Γ!

(−1,1) : (1 2)//
// , Γ!

(−1,−1) : (1 2).

When ϵ = (1, 1) or (−1,−1), the corresponding algebra is semisimple, so there is a
unique tilting module itself with dimension vector (1, 1) ∈ Z2. On the other hand, there
are infinitely many tilting modules over Kronecker algebras, and their dimension vectors
are given by (2a + 1, 2a + 3) of preprojectives and (2a + 3, 2a + 1) of preinjectives for
a = 0, 1, . . ..

By Theorem 9, the set of g-vectors of support τ -tilting A-modules is given by

{(1, 1)}⊔{(−2a−1, 2a+3), (−2a−3, 2a+1)}⊔{(2a+1,−2a−3), (2a+3,−2a−1)}⊔{(−1,−1)}
for a = 0, 1, . . .. We note that there are non-functorially finite torsion classes of modA
on the dotted line in Figure 1, that come from Kronecker algebras by Theorem 7. They
form a partially ordered set isomorphic to 2P

1(k) the power set of P1(k).
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Figure 1. The set of g-vectors for sτ -tiltA in the left side and the dimension
vectors for tiltA!

ϵ with ϵ ∈ {±1}2 in the right side.
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